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Abstract—The rise of adblockers is creating lots of concerns
to the online content publishing industry, as it severely affects
the possibility to offer free-content to end-users by subsidizing
the fruition costs with advertisements.

While many detection techniques have been proposed as a
countermeasure to the diffusion of adblocks, they either rely on
the injection of code in the served web pages, or require to
perform passive measurements for a long time, thus leading to
high costs and delays before collecting the desired information.

Motivated by these reasons, in this paper we propose a novel
technique to conduct in-network adblock usage measurements,
inspecting only few minutes of network traffic. Our approach
relies on network traffic inspection, and classification with ma-
chine learning techniques to detect whether the user is blocking,
or not, the advertisements.

Key findings obtained show that by inspecting only few minutes
of network traffic, we can reliably perform the detection with an
accuracy up to 99%, with a negligible computational overhead.

I. INTRODUCTION

Recent reports estimate that $12 billion dollars in ad rev-
enues will be lost in 2020 accountable to the usage of adblock-
ers [1]. This problem is severely affecting the ad-supported
free online publishing industry [2], which attempted to respond
by preventing end-users to load web-pages whenever they
appear to be blocking advertisements [3].

Nowadays, adblock detection is performed with anti-
adblock tools embedded in web-pages as JavaScript code, and
the same technology is also adopted to compute adblock usage
statistics for a given website [4]. However, the adblockers
community reacted by crafting new filtering lists that can now
block anti-adblock scripts themselves, thus giving birth to anti-
“anti-adblock” tools [5]. Thanks to them, not only end users
can by-pass anti-adblocks and still access the desired content,
but they also impact the quality of the adblock usage statistics
leading to false negatives and making it complex to reliably
know adblock diffusion.

Furthermore, reusing the same script-based technology to
extract adblock usage reports on a country or worldwide scale
is even more challenging. As a matter of fact, it would be
necessary to cover a large sample of popular websites in the
considered geographic region, partnering with publishers to
include the detection scripts in all the served web-pages, and
then obtain usage data. For all these reasons, recent popular re-
ports have computed adblock adoption statistics either relying
on indirect metrics or by leveraging user surveys [6].

Despite that adblock, anti-adblock and anti-“anti-adblock”
are tools characterized by an increasing level of complexity, for
the sake of measuring adblock usage, they all share common
denominators (and weak-spots): first of all they usually work
within the scope of end-users’ browsers, making it difficult
to extract general statistics independently from the website
visited, and secondly, they normally rely on the usage of filter
lists which need to be kept constantly (and mutually) updated,
thus having high maintenance costs [7], [8].

To overcome these challenges, previous scientific works
performed in-network adblock usage analysis by inspecting
network traffic and detecting evidences that the user is using
(or not) an adblock [9], [10]. These studies have clearly shown
that the usage of adblocks has an impact on the network
traffic. However, to perform the adblock detection, they either
inspected network traffic in clear text [9], making it difficult
to apply similar techniques to encrypted traffic, or checked
for adblock update requests [10], introducing a non-negligible
delay to inspect long-lasting traces for each customer and wait
for the adblock update process to happen.

Motivated by all these reasons, in this paper we propose
a new approach to measure adblock usage on a large scale,
passively inspecting only few minutes of network traffic and
then leveraging machine learning to classify the flows. Our
approach settles on a simple intuition: rather than testing for
content filtering within the scope of a web-page rendered
in a browser, we observe and compare the rate of network
requests originating from advertising services, with those that
do not carry ads. While previous works [9], [10] have observed
that this rate changes as a result of using an adblock, it is
challenging to set a threshold on the number of requests in
an empirical way, and this is the reason why our approach
leverages machine learning techniques to perform the training
and classification in an automatic fashion. Our tool supports
large-scale analysis, and generates fine-granular user-level
data, that can be helpful not only to generate adblock usage
reports, but also to provide useful insights when choosing how
to allocate advertising investments.

We designed our scheme from the ground up to over-
come the major shortcomings affecting current state-of-the-art
techniques for adblock detection, in particular our proposal
is website-agnostic, as it works across all websites without
requiring to have a partnership with all the owners to inject
JavaScript code in the pages; it is platform-independent, as it



can seamlessly detect adblocks for desktop or mobile devices;
it is efficient, as it needs to inspect only few minutes of traffic,
and finally it is update-tolerant, as it can react to any update to
adblocks, anti-adblocks, and anti-“anti-adblock” filtering lists,
requiring no human intervention at all.

To summarize, in this paper we provide the following
contributions:

1) we propose a novel in-network adblock detection tech-
nique to conduct large scale adblock-usage analysis in a
cost effective manner;

2) we extend our base classification scheme by adding (a)
a pre-classifier to filter-out idle-traffic records, and (b) a
post-classifier to perform the adblock detection only at
specific timeslots with high classification probability;

3) finally we perform extensive numerical evaluation of the
classifiers under several conditions, for both desktop and
mobile traffic.

Our key findings suggest that not only the adblock classifier
itself can reach a high classification accuracy up to 95%, per-
forming the detection for millions of users in just few seconds,
but we can also further boost the classification accuracy up to
99%, by pre- and post-filtering the observations.

The remainder of this paper is organized as follows. Sec. II
discusses related works. Sec. III presents the methodology
used, describing the challenges addressed by our proposal.
Numerical results and key findings are illustrated in Sec. IV,
and finally concluding remarks are presented in Sec. V.

II. RELATED WORK

Current state-of-the-art adblock detection tools leverage
JavaScript code to test whether the end user’s browser inter-
feres with normal content loading [3], [4], [7], [8]. More in
detail, detection scripts check whether bait content that would
normally be blocked by adblock “black-lists” (for example, a
file named ads.js), can be loaded in the current page [4]. If this
fake content cannot be retrieved, the user is indeed blocking
advertisement, and specific reactions can be performed, from
the mere reporting for analytics, up to denying access to
the web-page. A similar approach has been used in [2],
where authors estimate the fraction of users using adblock by
comparing with a Mixture Proportion Estimation technique the
data collected as a ground truth from a panel of users.

By inspecting network traffic, the main advantage of our
approach is that it does not require to embed code in any web
page, and therefore can be used to implement transparently
the adblock detection functionality for a large set of websites
and users.

Similarly to our approach, in [9] Pujol et al. leveraged the
Bro HTTP analyzer to extract HTTP information in clear text
and then classify flows using libadblockplus (a library that
implements the core functions of Adblock Plus [11]) distin-
guishing between ads and normal traffic requests. Metwalley
et al. in [10] performed an analysis of online tracking by
leveraging passive measurement, and studying the number of
third-party services contacted when surfing the web. Both [9]

and [10] implemented adblock detection by extracting adblock
updates from the collected trace.

Given that adblock updates are usually triggered at sporadic
time intervals (usually once every 4 or even more days), these
approaches introduce the need of capturing long traffic traces
to look for the adblock update flows. On the other hand, our
approach does not suffer from this shortcoming, as it can
detect adblock usage just by inspecting few minutes of network
traffic.

Several studies have analyzed anti-adblock scripts, provid-
ing tools to seamlessly detect their execution in HTML pages.
In [12], Mughees et al. analyzed the most common reactions
of adblock detectors, and trained a machine learning classifier
to identify anti-adblock code. Nithyanand et al. surveyed in [7]
popular websites employing adblock detection techniques,
while in [3] the authors presented a differential execution
analysis approach to discover anti-adblockers.

Anti-adblock detection made possible to create anti-adblock
filter lists (e.g., [5], [13]), which can be used by adblocks to
transparently bypass the adblock-detection scripts themselves.
In [8] the authors present a preliminary analysis on anti-
adblock filter lists, highlighting that their update process suf-
fers from major limitations, namely the fact that any change to
an adblock, anti-adblock or anti-adblock filter may potentially
trigger a ripple effect, forcing each provider to keep his tools
constantly updated with respect to all the adversaries.

Contrary to previous proposals, our approach is specifically
tailored to conduct large scale adblock usage analysis in a
cost-effective manner, overcoming the common weak spots
listed above. First of all, our approach is list-less, and does
not require manual intervention to keep the algorithm updated,
secondly it is unaffected by the usage of anti-adblock lists,
since it only analyzes the network flows that carry advertising
contents, and finally it does not require to embed any code in
a web-page, and therefore it is website-agnostic.

III. METHODOLOGY AND APPROACH

This section illustrates the software components we de-
signed and used to perform the analysis and to generate
data. The full architecture is depicted in Fig. 1 and can be
functionally split in three major components, namely Data
Collection (discussed in Sec. III-A) which generates synthetic
traces and labels them, Features Extraction (Sec. III-B) used
to perform traffic inspection producing the feature dataset, and
Machine Learning Classification (Sec. III-C) which, using the
features generated at the previous step, implements the chain
of classifiers.

A. Data Collection

In order to collect data to train the classifiers, we opted
for generating traffic traces automatically, implementing a
web-crawler with Selenium1 and Appium2, as similarly done
in other notable research works [9], [12]. This solution has
many advantages compared to using real users’ traffic. In fact,

1https://www.seleniumhq.org/
2A framework for mobile apps automation. Website: http://appium.io/



Figure 1: Proposed architecture for data collection with synthetic traffic generation, flow-level features extraction and machine-
learning classification.

by spawning many crawlers on virtual machines running in
data-centers in different geographic regions, not only a large
amount of data can be generated in few hours at a very low
cost, but we can also better map ads providers on a global
scale. Furthermore, we can easily generate synthetic traces
with different browsers and filtering plugins, just by changing
the crawler configuration, as shown in Fig. 1.

We instructed the crawler to visit the homepage of the most
popular websites worldwide, with a frequency distribution
equal to their popularity. In particular, we crawled the first
1000 websites appearing in the Alexa Top list3, a represen-
tative data source of websites popularity used also in other
works [7], [14].

To better mimic the standard user’s behavior, we refined
the crawler for Google Search, Twitter, YouTube, Facebook,
Instagram and Twitch, by making it perform specific actions,
such as playing videos published on the most popular YouTube
channels, or performing queries on Google search, as well as
opening influencers’ profiles on social networks.

For the desktop scenario we collected data with Chrome
and Firefox, because of their market share [15], and we
also took into consideration the effects of different filtering
policies by using Adblock Plus [11] and Ghostery [16], two
of the most popular adblock and anti-tracking tools available
for both browsers [8]. As depicted in Fig. 1, no content-
filtering was used with the Clean plugin profile, while AdBlock
Plus and Ghostery were both blocking advertising. For the
mobile scenario, we collected data using Opera for Android
(configured to block ads), Firefox Focus, Cliqz and the Google
Chrome Mobile (used as a reference for non-blocking ads).

Lastly, we complemented our Data Collection component
by instructing the crawler to generate traffic traces to simulate
“idle” users’ behavior, as further discussed in Sec. III-C,
IV-B and IV-C. For this case, we instructed the crawler to
either visit websites that do not provide advertisements, or to
download files images and documents, as well as to simply
generate background traffic produced by the operating system
and application updates.

B. Feature Extraction
Features extraction was performed by analyzing network

traffic with a customized version of nDPI [17], an open-source

3https://www.alexa.com/topsites

Deep Packet Inspection probe.
A fundamental information that we wanted to extract from

the DPI is whether a flow carries (or not) “advertisement”
content. Although nDPI can nowadays detect hundreds of
protocols, the current latest version (v2.2) cannot yet discern
whether a flow is an ad, or not. To overcome this limitation, we
extended nDPI, testing whether the detected hostname, or the
Server-Name Indication (SNI) matched one of those included
in popular adblock filter lists (e.g., [18], [11]). Whenever there
is a match, we tag the network flow with the “ADS” label,
otherwise we tag it as being “NON ADS”.

Our approach is not influenced by encrypted traffic since
we are not analyzing the packets payload but only the
HTTP/HTTPS headers that are un-encrypted. Recent pro-
posal [19] describes the possibility to encrypt also the SNI
field in HTTPS headers (which is a fundamental information
that we used). However, the new TLS 1.3 standard does not
include SNI encryption (even if it includes the encryption of
the connection handshake), thus our approach is still viable
with the new standards [20]. Moreover, SNI is widely adopted
for HTTPS traffic as it removes the need of having a dedicated
IP address for each certificate, in fact, as shown in recent
reports (e.g.: [21]), SNI adoption is well above 99%.

In addition to our custom advertising tag, we also extracted
the application/service to which the flow belongs, as detected
by nDPI (called protocol). To keep the number of features
contained, rather than considering all the hundreds proto-
cols/applications supported by nDPI, we restricted our analysis
to a subset of 11 of them, including the most popular services
(i.e. Google / Facebook / Twitter / YouTube / Amazon / eBay
/ Instagram / Microsoft / Yahoo / Cloudflare). On top of these,
we added the “OTHERS” meta-protocol, which groups all the
network flows not belonging to the applications considered in
the analysis.

For each network flow, we extracted from nDPI the fol-
lowing flow-level metrics: 1) The detected protocol; 2) The
ADS / NON ADS tag; 3) The number of packets; 4) The
volume of traffic (in bytes). Even though we implemented our
system customizing nDPI, our approach is DPI-agnostic and
can therefore be applied to other Deep Packet Inspection tools
as well, including commercial products. Our approach can be
applied also by network operators which usually have already
deployed DPI probes in their Point-of-Presence (POP).
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Figure 2: Accuracy, precision and recall of the adblock classifier.

We generate the features splitting the time into slots at a
fixed resolution, and then aggregating and normalizing the
statistics. We also evaluated the impact of memory, by adding
to each features vector the value of the statistics observed
in previous time-slots. We considered a varying number of
memory steps from 0 (no-memory) up to 5 previous slots.

C. Machine Learning Classification

While having an impact on flows, as observed in other works
such as [9], [10], performing adblock detection inspecting only
few minutes of network traffic is far from being an easy task.
For this reason, we decided to apply a Machine Learning
classifier to the extracted features vector as to be able to
automatically compute thresholds on the extracted metrics, to
identify whenever the user is using the ad-block or not by
jointly considering a large set of network-level metrics.

While running preliminary analysis we discovered that there
are specific cases in which the information arising from the
inspection of the flows is not sufficient to perform adblock
detection. Notable use-cases are: 1) when the user is not
actively browsing, but the device generates background traffic;
2) when the user is browsing on websites that are ads-free4,
or 3) when the user is simply downloading files (images,
documents etc.).

Letting the classifier perform the classification even in these
adverse cases leads to poor classification performance. For this
reason, the Machine Learning Classification component we
designed is characterized by a chain of three major steps (as
in Fig. 1): (1) a pre-classifier, (2) the adblock classifier, and
(3) a post-classifier.

More in detail, the objective of the pre-classifier is to
discriminate between active and idle traffic (intrinsically ads-
free traffic), filtering records belonging to the latter class out
of the subsequent steps of the classification chain.

Once that only “active” traffic is preserved, the data record
is then analyzed by the adblock classifier, which normally
outputs probability values for the AdBlock and Non-AdBlock
class.

Finally, the post-classifier filters the output of the adblock
classifier, based on the obtained probability values and the

4Wikipedia is one notable example, see https://donate.wikimedia.org/

α-threshold parameter. When the probability value of either
the “clean” or the “adblock” class generated by the adblock
classifier is below α, the record is discarded for having “Low
Prediction Probability”.

By using this chain of classifiers we were able to boost the
classification performance up to 99% accuracy, as thoroughly
discussed in Sec. IV-B and Sec. IV-C.

IV. EVALUATION AND DISCUSSION

In this section we analyze and discuss the numerical results
obtained performing extensive analysis under realistic traffic
conditions.

All the tests were performed using Python 3.5.1 and Scikit
learn v0.19.1 on AWS EC2 r3.xlarge instances5, having 4
vCPUs, 30.5 GB RAM and 1x80GB SSD. nDPI inspected
1TB of traffic generated with our proposed Data Collection
system. The traffic was generated from different AWS regions
(Asia, USA, South America and Europe) to emulate traffic
coming from all over the world. Unless stated otherwise, the
numerical results refer to the following base configuration:
Random Forest classifier (RF), 5 memory slots, 8 protocols,
120 seconds slotting resolution.

Training and testing was performed using multiple random
Shuffle & Splits with 70% of the dataset used for training
and 30% for testing. The performance of the classifier is then
evaluated averaging the results from 20 runs and according to
accuracy, precision and recall metrics. On the graphs we show
the precision and recall as being the averages of the “clean”
and “adblock” classes.

A. Adblock Classifier Performance

This section discusses the results depicted in Fig. 2 (which
refers to the “adblock classifier” only), generated with both
active and idle traffic.

After testing commonly used classifiers (Decision Trees,
Naı̈ve Bayes, Random Forest and Neural Networks classifiers),
as expected, we obtained the best results with a Random
Forest classifier (with 10 trees without pruning), reaching 95%
accuracy and precision, and 92% recall.

The effect of memory is illustrated in Fig. 2a, where we
observe that the higher the memory, the better the results.

5https://aws.amazon.com/it/ec2/instance-types/
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Figure 3: Accuracy, precision and recall of the pre-classifier.

More in detail, we obtained an improvement of at least 2%
for all performance metrics, just by adding 5 memory slots,
compared to the case using only current data (i.e. the zero-
memory scenario). Indeed, the classifier can take advantage of
the observations in previous time slots, checking whether the
user is systematically blocking advertising or whether it was
just a sporadic event.

Being able to discriminate a large number of application
level protocols with the DPI has only a minor impact on the
adblock classification results, as shown in Fig. 2b. More in
detail, when the number of protocols is equal to 1, the DPI
detects all flows as belonging to the “OTHER” protocol class,
described in Sec. III-B, and therefore the classification only
relies on the ADS / NON ADS tag. Rather than being able to
classify many different protocols, for our use-case, it is better
to focus only on few of them, usually those that drive most
of the traffic (e.g., Google / Facebook / YouTube).

Fig. 2c shows the effect of the slotting resolution. We
observed that inspecting only 10 seconds of traffic is sufficient
to reach an accuracy higher than 94%, while it is possible to
reach 95% accuracy by observing 120 seconds of traffic.

Lastly, we tested the average time needed to train the clas-
sifier and the time needed to classify 1 million data records.
Training a Random Forest classifier with all the collected
dataset required less than 4 seconds, while we were able to do
the classification of 1 million of records in less than 8 seconds,
showing that our proposed scheme can scale up to large-case
scenarios.

B. Pre-classifier Performance

This section presents the results observed for the pre-
classifier, shown in Fig. 3.

As described in Sec. III-C the objective of the pre-classifier
is to filter out “idle” traffic (i.e.: traffic intrinsically ads-
free, such as background traffic, ads-free websites, file and
document download), which cannot be used as such to discern
whether the user is using an adblock or not. On the other hand,
non-idle traffic likely contains relevant data for the purpose of
adblock detection, and therefore it can be used in subsequent
steps of the classification chain.

For the pre-classifier we still used a Random Forest (with
10 trees and no pruning), as in Sec. IV-A, but this time we

trained it to discriminate idle and non-idle traffic. Overall, we
observed a high pre-classification accuracy (up to 97.7%), as
well as high precision and recall, meaning that there is no bias
between the classification performance of the active and idle
traffic class, as in Fig. 3.

The effect of memory is shown in Fig. 3a, where we
observe that increasing memory up to 5 slots we obtained
a 2% increment on all the performance metrics, as similarly
observed in Sec. IV-A. On the other hand, Fig. 3b shows
the impact of the number of protocols identified by the DPI.
Similarly to what observed in Sec. IV-A, by introducing in the
features vector metrics for other application layer protocols an
improvement of 3.5% in classification accuracy is observed.
This is accountable to the fact that by introducing more
protocols, the classification algorithm can better discriminate
whether the user is generating idle or active traffic.

C. Post-classifier Performance

This section presents the results observed for the post-
classifier which are depicted in Fig. 4. In particular, Fig. 4a
compares the accuracy result obtained with the bare adblock
classifier, with the post-classifier data, for different α values.
As expected, we observe that the higher the α-value, the
higher the accuracy, since the classifier only performs the
decision with very high classification probabilities. However,
this comes as a trade-off with the number of samples discarded
by the classifier, as shown in Fig. 4b. For the considered
scenarios we observed a good compromise setting α = 75%,
for which we obtained 99.2% classification accuracy, while
discarding less than 20% of the samples.

D. Mobile Traffic Performance

In this section, we focus our analysis on the mobile scenario,
and present the testing results obtained with mobile-traces gen-
erated with Appium and containing, for the sake of simplicity,
“active” traffic traces only.

Tab. I summarizes the values observed (with the base
settings reported at the beginning of Sec. IV). As expected,
given that we fed the chain with “active” records-only, less
than 200 samples were filtered by the pre-classifier, leading
to 99% accuracy of this initial step. Although the adblock-
detector scored 84.4% accuracy, by setting α = 75% and
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Figure 4: Effect of α on post classification.

Training set 1042634 samples
Testing set (mobile only) 21278 samples
Pre-classifier filtered samples 198 (99% accuracy)
Adblock detector accuracy 84.4%
Confidence threshold α 75%
Out of threshold samples 11498 (54% dropped)
Detection accuracy after threshold 96.2%

Table I: Mobile traffic results

then running the post-classification, we could improve the
accuracy up to 96.2%, dropping half of the samples. In the
considered scenario post-classification dramatically improves
the accuracy of almost 12%, at the minor cost of doubling
the observation window. Rather than taking immediately the
classification decision, it is better to wait (almost 5 minutes
in the considered example), and perform the detection only at
specific time slots where the quality of the data is higher.

V. CONCLUSION

In this paper we tackled the problem of detecting adblock
usage from the network stand point. In order to do that we
exploited traffic inspection and machine learning techniques
to detect when the user is blocking, or not, advertisements.

Our in-network approach goes beyond current state-of-the-
art adblock detection techniques making it possible to conduct
large-scale adblock usage measurements by inspecting only
few minutes of network traffic for each user. In particular,
numerical results have shown that our tool can reach very
high accuracy up to 95%, which can further be increased up
to 99% by adding a pre- and post-classification steps, to filter
time slots for which the inspected traffic did not carry enough
information to perform the decision.
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